On oblivious branching programs with bounded repetition that cannot efficiently compute CNFs of bounded treewidth

10/10/2015
by   Igor Razgon, et al.
0

In this paper we study complexity of an extension of ordered binary decision diagrams (OBDDs) called c-OBDDs on CNFs of bounded (primal graph) treewidth. In particular, we show that for each k there is a class of CNFs of treewidth k ≥ 3 for which the equivalent c-OBDDs are of size Ω(n^k/(8c-4)). Moreover, this lower bound holds if c-OBDD is non-deterministic and semantic. Our second result uses the above lower bound to separate the above model from sentential decision diagrams (SDDs). In order to obtain the lower bound, we use a structural graph parameter called matching width. Our third result shows that matching width and pathwidth are linearly related.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset