On oblivious branching programs with bounded repetition that cannot efficiently compute CNFs of bounded treewidth
In this paper we study complexity of an extension of ordered binary decision diagrams (OBDDs) called c-OBDDs on CNFs of bounded (primal graph) treewidth. In particular, we show that for each k there is a class of CNFs of treewidth k ≥ 3 for which the equivalent c-OBDDs are of size Ω(n^k/(8c-4)). Moreover, this lower bound holds if c-OBDD is non-deterministic and semantic. Our second result uses the above lower bound to separate the above model from sentential decision diagrams (SDDs). In order to obtain the lower bound, we use a structural graph parameter called matching width. Our third result shows that matching width and pathwidth are linearly related.
READ FULL TEXT