On observability and optimal gain design for distributed linear filtering and prediction

03/07/2022
by   Subhro Das, et al.
0

This paper presents a new approach to distributed linear filtering and prediction. The problem under consideration consists of a random dynamical system observed by a multi-agent network of sensors where the network is sparse. Inspired by the consensus+innovations type of distributed estimation approaches, this paper proposes a novel algorithm that fuses the concepts of consensus and innovations. The paper introduces a definition of distributed observability, required by the proposed algorithm, which is a weaker assumption than that of global observability and connected network assumptions combined together. Following first principles, the optimal gain matrices are designed such that the mean-squared error of estimation is minimized at each agent and the distributed version of the algebraic Riccati equation is derived for computing the gains.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset