On optimal allocation of treatment/condition variance in principal component analysis

04/19/2018
by   André Beauducel, et al.
0

The allocation of a (treatment) condition-effect on the wrong principal component (misallocation of variance) in principal component analysis (PCA) has been addressed in research on event-related potentials of the electroencephalogram. However, the correct allocation of condition-effects on PCA components might be relevant in several domains of research. The present paper investigates whether different loading patterns at each condition-level are a basis for an optimal allocation of between-condition variance on principal components. It turns out that a similar loading shape at each condition-level is a necessary condition for an optimal allocation of between-condition variance, whereas a similar loading magnitude is not necessary.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro