On the Approximability of External-Influence-Driven Problems

05/30/2023
by   Panagiotis Aivasiliotis, et al.
0

Domination problems in general can capture situations in which some entities have an effect on other entities (and sometimes on themselves). The usual goal is to select a minimum number of entities that can influence a target group of entities or to influence a maximum number of target entities with a certain number of available influencers. In this work, we focus on the distinction between internal and external domination in the respective maximization problem. In particular, a dominator can dominate its entire neighborhood in a graph, internally dominating itself, while those of its neighbors which are not dominators themselves are externally dominated. We study the problem of maximizing the external domination that a given number of dominators can yield and we present a 0.5307-approximation algorithm for this problem. Moreover, our methods provide a framework for approximating a number of problems that can be cast in terms of external domination. In particular, we observe that an interesting interpretation of the maximum coverage problem can capture a new problem in elections, in which we want to maximize the number of externally represented voters. We study this problem in two different settings, namely Non-Secrecy and Rational-Candidate, and provide approximability analysis for two alternative approaches; our analysis reveals, among other contributions, that an earlier resource allocation algorithm is, in fact, a 0.462-approximation algorithm for maximum external domination in directed graphs.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro