On the Complexity of A/B Testing

05/13/2014
by   Emilie Kaufmann, et al.
0

A/B testing refers to the task of determining the best option among two alternatives that yield random outcomes. We provide distribution-dependent lower bounds for the performance of A/B testing that improve over the results currently available both in the fixed-confidence (or delta-PAC) and fixed-budget settings. When the distribution of the outcomes are Gaussian, we prove that the complexity of the fixed-confidence and fixed-budget settings are equivalent, and that uniform sampling of both alternatives is optimal only in the case of equal variances. In the common variance case, we also provide a stopping rule that terminates faster than existing fixed-confidence algorithms. In the case of Bernoulli distributions, we show that the complexity of fixed-budget setting is smaller than that of fixed-confidence setting and that uniform sampling of both alternatives -though not optimal- is advisable in practice when combined with an appropriate stopping criterion.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro