On the Intersection Property of Conditional Independence and its Application to Causal Discovery
This work investigates the intersection property of conditional independence. It states that for random variables A,B,C and X we have that X independent of A given B,C and X independent of B given A,C implies X independent of (A,B) given C. Under the assumption that the joint distribution has a continuous density, we provide necessary and sufficient conditions under which the intersection property holds. The result has direct applications to causal inference: it leads to strictly weaker conditions under which the graphical structure becomes identifiable from the joint distribution of an additive noise model.
READ FULL TEXT