On-Time Communications Over Fading Channels

02/17/2022
by   Yan Li, et al.
0

We consider the on-time transmissions of a sequence of packets over a fading channel.Different from traditional in-time communications, we investigate how many packets can be received δ-on-time, meaning that the packet is received with a deviation no larger than δ slots. In this framework, we first derive the on-time reception rate of the random transmissions over the fading channel when no controlling is used. To improve the on-time reception rate, we further propose to schedule the transmissions by delaying, dropping, or repeating the packets. Specifically, we model the scheduling over the fading channel as a Markov decision process (MDP) and then obtain the optimal scheduling policy using an efficient iterative algorithm. For a given sequence of packet transmissions, we analyze the on-time reception rate for the random transmissions and the optimal scheduling. Our analytical and simulation results show that the on-time reception rate of random transmissions decreases (to zero) with the sequence length.By using the optimal packet scheduling, the on-time reception rate converges to a much larger constant. Moreover, we show that the on-time reception rate increases if the target reception interval and/or the deviation tolerance δ is increased, or the randomness of the fading channel is reduced.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro