ONCE and ONCE+: Counting the Frequency of Time-constrained Serial Episodes in a Streaming Sequence

01/29/2018
by   Hui Li, et al.
0

As a representative sequential pattern mining problem, counting the frequency of serial episodes from a streaming sequence has drawn continuous attention in academia due to its wide application in practice, e.g., telecommunication alarms, stock market, transaction logs, bioinformatics, etc. Although a number of serial episodes mining algorithms have been developed recently, most of them are neither stream-oriented, as they require multi-pass of dataset, nor time-aware, as they fail to take into account the time constraint of serial episodes. In this paper, we propose two novel one-pass algorithms, ONCE and ONCE+, each of which can respectively compute two popular frequencies of given episodes satisfying predefined time-constraint as signals in a stream arrives one-after-another. ONCE is only used for non-overlapped frequency where the occurrences of a serial episode in sequence are not intersected. ONCE+ is designed for the distinct frequency where the occurrences of a serial episode do not share any event. Theoretical study proves that our algorithm can correctly mine the frequency of target time constraint serial episodes in a given stream. Experimental study over both real-world and synthetic datasets demonstrates that the proposed algorithm can work, with little time and space, in signal-intensive streams where millions of signals arrive within a single second. Moreover, the algorithm has been applied in a real stream processing system, where the efficacy and efficiency of this work is tested in practical applications.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset