Online gradient-based mixtures for transfer modulation in meta-learning
Learning-to-learn or meta-learning leverages data-driven inductive bias to increase the efficiency of learning on a novel task. This approach encounters difficulty when transfer is not mutually beneficial, for instance, when tasks are sufficiently dissimilar or change over time. Here, we use the connection between gradient-based meta-learning and hierarchical Bayes (Grant et al., 2018) to propose a mixture of hierarchical Bayesian models over the parameters of an arbitrary function approximator such as a neural network. Generalizing the model-agnostic meta-learning (MAML) algorithm (Finn et al., 2017), we present a stochastic expectation maximization procedure to jointly estimate parameter initializations for gradient descent as well as a latent assignment of tasks to initializations. This approach better captures the diversity of training tasks as opposed to consolidating inductive biases into a single set of hyperparameters. Our experiments demonstrate better generalization performance on the standard miniImageNet benchmark for 1-shot classification. We further derive a novel and scalable non-parametric variant of our method that captures the evolution of a task distribution over time as demonstrated on a set of few-shot regression tasks.
READ FULL TEXT