Online Multi-target regression trees with stacked leaf models

The amount of available data raises at large steps. Developing machine learning strategies to cope with the high throughput and changing data streams is a scope of high relevance. Among the prediction tasks in online machine learning, multi-target regression has gained increased attention due to its high applicability and relation with real-world problems. While reliable and effective solutions have been proposed for batch multi-target regression, the few existing solutions in the online scenario present gaps which should be further investigated. Among these problems, none of the existing solutions consider the occurrence of inter-target correlations when making predictions. In this work, we propose an extension to existing decision tree based solutions in online multi-target regression which tackles the problem mentioned above. Our proposal, called Stacked Single-target Hoeffding Tree (SST-HT) uses the inter-target dependencies as an additional information source to enhance accuracy. Throughout an extensive experimental setup, we evaluate our proposal against state-of-the-art decision tree-based solutions for online multi-target regression tasks on sixteen datasets. Our observations show that SST-HT is capable of achieving significantly smaller errors than the other methods, whereas only increasing the needed time and memory requirements in small amounts.


page 1

page 2

page 3

page 4


Using dynamical quantization to perform split attempts in online tree regressors

A central aspect of online decision tree solutions is evaluating the inc...

QUBO Decision Tree: Annealing Machine Extends Decision Tree Splitting

This paper proposes an extension of regression trees by quadratic uncons...

Towards Efficient and Scalable Acceleration of Online Decision Tree Learning on FPGA

Decision trees are machine learning models commonly used in various appl...

Memory-Efficient Global Refinement of Decision-Tree Ensembles and its Application to Face Alignment

Ren et al. recently introduced a method for aggregating multiple decisio...

Hard-ODT: Hardware-Friendly Online Decision Tree Learning Algorithm and System

Decision trees are machine learning models commonly used in various appl...

Data, Trees, and Forests – Decision Tree Learning in K-12 Education

As a consequence of the increasing influence of machine learning on our ...

Please sign up or login with your details

Forgot password? Click here to reset