Optimal Decision Trees for the Algorithm Selection Problem: Integer Programming Based Approaches

Even though it is well known that for most relevant computational problems different algorithms may perform better on different classes of problem instances, most computational experiments still focus on determining a single best algorithm configuration based on aggregate results such as the average. In this paper, we propose Integer Programming based approaches to build decision trees for the Algorithm Selection Problem. These techniques allow to automatically: (i) find the most important problem features to determine problem classes; (ii) group the problems into classes and (iii) select the best algorithm configuration for each class. To evaluate this new approach, extensive computational experiments were executed using the linear programming algorithms implemented in the COIN-OR Branch & Cut solver in a comprehensive set of instances, including all MIPLIB benchmark instances. The results exceeded our initial expectations. While the single best parameter setting discovered decreased the total running time by 22 total running time by 40 These results indicate that our method generalizes quite well and does not overfit.


page 1

page 2

page 3

page 4


Quant-BnB: A Scalable Branch-and-Bound Method for Optimal Decision Trees with Continuous Features

Decision trees are one of the most useful and popular methods in the mac...

An Enhanced Branch-and-bound Algorithm for the Talent Scheduling Problem

The talent scheduling problem is a simplified version of the real-world ...

LeapsAndBounds: A Method for Approximately Optimal Algorithm Configuration

We consider the problem of configuring general-purpose solvers to run ef...

Constructing classification trees using column generation

This paper explores the use of Column Generation (CG) techniques in cons...

Probing a Set of Trajectories to Maximize Captured Information

We study a trajectory analysis problem we call the Trajectory Capture Pr...

Automated Configuration of Genetic Algorithms by Tuning for Anytime Performance

Finding the best configuration of algorithms' hyperparameters for a give...

Optimization with Gradient-Boosted Trees and Risk Control

Decision trees effectively represent the sparse, high dimensional and no...

Please sign up or login with your details

Forgot password? Click here to reset