Optimal Experimental Design for Staggered Rollouts

by   Ruoxuan Xiong, et al.

Experimentation has become an increasingly prevalent tool for guiding policy choices, firm decisions, and product innovation. A common hurdle in designing experiments is the lack of statistical power. In this paper, we study optimal multi-period experimental design under the constraint that the treatment cannot be easily removed once implemented; for example, a government or firm might implement treatment in different geographies at different times, where the treatment cannot be easily removed due to practical constraints. The design problem is to select which units to treat at which time, intending to test hypotheses about the effect of the treatment. When the potential outcome is a linear function of a unit effect, a time effect, and observed discrete covariates, we provide an analytically feasible solution to the design problem where the variance of the estimator for the treatment effect is at most 1+O(1/N^2) times the variance of the optimal design, where N is the number of units. This solution assigns units in a staggered treatment adoption pattern, where the proportion treated is a linear function of time. In the general setting where outcomes depend on latent covariates, we show that historical data can be utilized in the optimal design. We propose a data-driven local search algorithm with the minimax decision criterion to assign units to treatment times. We demonstrate that our approach improves upon benchmark experimental designs through synthetic experiments on real-world data sets from several domains, including healthcare, finance, and retail. Finally, we consider the case where the treatment effect changes with the time of treatment, showing that the optimal design treats a smaller fraction of units at the beginning and a greater share at the end.


Rate-Optimal Cluster-Randomized Designs for Spatial Interference

We consider a potential outcomes model in which interference may be pres...

Synthetically Controlled Bandits

This paper presents a new dynamic approach to experiment design in setti...

Regression-adjusted average treatment effect estimates in stratified and sequentially randomized experiments

Stratified and sequentially randomized experiments are widely used in fi...

Balancing covariates in randomized experiments using the Gram-Schmidt walk

The paper introduces a class of experimental designs that allows experim...

Synthetic Design: An Optimization Approach to Experimental Design with Synthetic Controls

We investigate the optimal design of experimental studies that have pre-...

Synthetic Principal Component Design: Fast Covariate Balancing with Synthetic Controls

The optimal design of experiments typically involves solving an NP-hard ...

A general characterization of optimal tie-breaker designs

In a regression discontinuity design, subjects with a running variable x...

Please sign up or login with your details

Forgot password? Click here to reset