Optimization hardness as transient chaos in an analog approach to constraint satisfaction

08/02/2012
by   Maria Ercsey-Ravasz, et al.
0

Boolean satisfiability [1] (k-SAT) is one of the most studied optimization problems, as an efficient (that is, polynomial-time) solution to k-SAT (for k≥ 3) implies efficient solutions to a large number of hard optimization problems [2,3]. Here we propose a mapping of k-SAT into a deterministic continuous-time dynamical system with a unique correspondence between its attractors and the k-SAT solution clusters. We show that beyond a constraint density threshold, the analog trajectories become transiently chaotic [4-7], and the boundaries between the basins of attraction [8] of the solution clusters become fractal [7-9], signaling the appearance of optimization hardness [10]. Analytical arguments and simulations indicate that the system always finds solutions for satisfiable formulae even in the frozen regimes of random 3-SAT [11] and of locked occupation problems [12] (considered among the hardest algorithmic benchmarks); a property partly due to the system's hyperbolic [4,13] character. The system finds solutions in polynomial continuous-time, however, at the expense of exponential fluctuations in its energy function.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro