Optimization of operation parameters towards sustainable WWTP based on deep reinforcement learning

08/19/2020
by   Kehua Chena, et al.
0

A large amount of wastewater has been produced nowadays. Wastewater treatment plants (WWTPs) are designed to eliminate pollutants and alleviate environmental pollution resulting from human activities. However, the construction and operation of WWTPs still have negative impacts. WWTPs are complex to control and optimize because of high nonlinearity and variation. This study used a novel technique, multi-agent deep reinforcement learning (DRL), to optimize dissolved oxygen (DO) and dosage in a hypothetical WWTP. The reward function is specially designed as LCA-based form to achieve sustainability optimization. Four scenarios: baseline, LCA-oriented, cost-oriented and effluent-oriented are considered. The result shows that optimization based on LCA has lowest environmental impacts. The comparison of different SRT indicates that a proper SRT can reduce negative impacts greatly. It is worth mentioning that the retrofitting of WWTPs should be implemented with the consideration of other environmental impacts except cost. Moreover, the comparison between DRL and genetic algorithm (GA) indicates that DRL can solve optimization problems effectively and has great extendibility. In a nutshell, there are still limits and shortcomings of this work, future studies are required.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset