Optimizing and Contrasting Recurrent Neural Network Architectures

10/16/2015
by   Ben Krause, et al.
0

Recurrent Neural Networks (RNNs) have long been recognized for their potential to model complex time series. However, it remains to be determined what optimization techniques and recurrent architectures can be used to best realize this potential. The experiments presented take a deep look into Hessian free optimization, a powerful second order optimization method that has shown promising results, but still does not enjoy widespread use. This algorithm was used to train to a number of RNN architectures including standard RNNs, long short-term memory, multiplicative RNNs, and stacked RNNs on the task of character prediction. The insights from these experiments led to the creation of a new multiplicative LSTM hybrid architecture that outperformed both LSTM and multiplicative RNNs. When tested on a larger scale, multiplicative LSTM achieved character level modelling results competitive with the state of the art for RNNs using very different methodology.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset