Optimus: Organizing Sentences via Pre-trained Modeling of a Latent Space

04/05/2020
by   Chunyuan Li, et al.
1

When trained effectively, the Variational Autoencoder (VAE) can be both a powerful generative model and an effective representation learning framework for natural language. In this paper, we propose the first large-scale language VAE model, Optimus. A universal latent embedding space for sentences is first pre-trained on large text corpus, and then fine-tuned for various language generation and understanding tasks. Compared with GPT-2, Optimus enables guided language generation from an abstract level using the latent vectors. Compared with BERT, Optimus can generalize better on low-resource language understanding tasks due to the smooth latent space structure. Extensive experimental results on a wide range of language tasks demonstrate the effectiveness of Optimus. It achieves new state-of-the-art on VAE language modeling benchmarks. We hope that our first pre-trained big VAE language model itself and results can help the NLP community renew the interests of deep generative models in the era of large-scale pre-training, and make these principled methods more practical.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro