PAC-Bayes with Minimax for Confidence-Rated Transduction

01/15/2015
by   Akshay Balsubramani, et al.
0

We consider using an ensemble of binary classifiers for transductive prediction, when unlabeled test data are known in advance. We derive minimax optimal rules for confidence-rated prediction in this setting. By using PAC-Bayes analysis on these rules, we obtain data-dependent performance guarantees without distributional assumptions on the data. Our analysis techniques are readily extended to a setting in which the predictor is allowed to abstain.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro