Packed-Ensembles for Efficient Uncertainty Estimation

10/17/2022
by   Olivier Laurent, et al.
15

Deep Ensembles (DE) are a prominent approach achieving excellent performance on key metrics such as accuracy, calibration, uncertainty estimation, and out-of-distribution detection. However, hardware limitations of real-world systems constrain to smaller ensembles and lower capacity networks, significantly deteriorating their performance and properties. We introduce Packed-Ensembles (PE), a strategy to design and train lightweight structured ensembles by carefully modulating the dimension of their encoding space. We leverage grouped convolutions to parallelize the ensemble into a single common backbone and forward pass to improve training and inference speeds. PE is designed to work under the memory budget of a single standard neural network. Through extensive studies we show that PE faithfully preserve the properties of DE, e.g., diversity, and match their performance in terms of accuracy, calibration, out-of-distribution detection and robustness to distribution shift.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro