Pair-Wise Cluster Analysis

09/19/2010
by   David R. Hardoon, et al.
0

This paper studies the problem of learning clusters which are consistently present in different (continuously valued) representations of observed data. Our setup differs slightly from the standard approach of (co-) clustering as we use the fact that some form of `labeling' becomes available in this setup: a cluster is only interesting if it has a counterpart in the alternative representation. The contribution of this paper is twofold: (i) the problem setting is explored and an analysis in terms of the PAC-Bayesian theorem is presented, (ii) a practical kernel-based algorithm is derived exploiting the inherent relation to Canonical Correlation Analysis (CCA), as well as its extension to multiple views. A content based information retrieval (CBIR) case study is presented on the multi-lingual aligned Europal document dataset which supports the above findings.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset