Parallel and Distributed Block-Coordinate Frank-Wolfe Algorithms

09/22/2014
by   Yu-Xiang Wang, et al.
0

We develop parallel and distributed Frank-Wolfe algorithms; the former on shared memory machines with mini-batching, and the latter in a delayed update framework. Whenever possible, we perform computations asynchronously, which helps attain speedups on multicore machines as well as in distributed environments. Moreover, instead of worst-case bounded delays, our methods only depend (mildly) on expected delays, allowing them to be robust to stragglers and faulty worker threads. Our algorithms assume block-separable constraints, and subsume the recent Block-Coordinate Frank-Wolfe (BCFW) method lacoste2013block. Our analysis reveals problem-dependent quantities that govern the speedups of our methods over BCFW. We present experiments on structural SVM and Group Fused Lasso, obtaining significant speedups over competing state-of-the-art (and synchronous) methods.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro