Parallel Rectangle Flip Attack: A Query-based Black-box Attack against Object Detection

01/22/2022
by   Siyuan Liang, et al.
0

Object detection has been widely used in many safety-critical tasks, such as autonomous driving. However, its vulnerability to adversarial examples has not been sufficiently studied, especially under the practical scenario of black-box attacks, where the attacker can only access the query feedback of predicted bounding-boxes and top-1 scores returned by the attacked model. Compared with black-box attack to image classification, there are two main challenges in black-box attack to detection. Firstly, even if one bounding-box is successfully attacked, another sub-optimal bounding-box may be detected near the attacked bounding-box. Secondly, there are multiple bounding-boxes, leading to very high attack cost. To address these challenges, we propose a Parallel Rectangle Flip Attack (PRFA) via random search. We explain the difference between our method with other attacks in Fig. <ref>. Specifically, we generate perturbations in each rectangle patch to avoid sub-optimal detection near the attacked region. Besides, utilizing the observation that adversarial perturbations mainly locate around objects' contours and critical points under white-box attacks, the search space of attacked rectangles is reduced to improve the attack efficiency. Moreover, we develop a parallel mechanism of attacking multiple rectangles simultaneously to further accelerate the attack process. Extensive experiments demonstrate that our method can effectively and efficiently attack various popular object detectors, including anchor-based and anchor-free, and generate transferable adversarial examples.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro