Parameter estimation for fractional Poisson processes
The paper proposes a formal estimation procedure for parameters of the fractional Poisson process (fPp). Such procedures are needed to make the fPp model usable in applied situations. The basic idea of fPp, motivated by experimental data with long memory is to make the standard Poisson model more flexible by permitting non-exponential, heavy-tailed distributions of interarrival times and different scaling properties. We establish the asymptotic normality of our estimators for the two parameters appearing in our fPp model. This fact permits construction of the corresponding confidence intervals. The properties of the estimators are then tested using simulated data.
READ FULL TEXT