Parameterized and Approximation Algorithms for the Maximum Bimodal Subgraph Problem

08/29/2023
by   Walter Didimo, et al.
0

A vertex of a plane digraph is bimodal if all its incoming edges (and hence all its outgoing edges) are consecutive in the cyclic order around it. A plane digraph is bimodal if all its vertices are bimodal. Bimodality is at the heart of many types of graph layouts, such as upward drawings, level-planar drawings, and L-drawings. If the graph is not bimodal, the Maximum Bimodal Subgraph (MBS) problem asks for an embedding-preserving bimodal subgraph with the maximum number of edges. We initiate the study of the MBS problem from the parameterized complexity perspective with two main results: (i) we describe an FPT algorithm parameterized by the branchwidth (and hence by the treewidth) of the graph; (ii) we establish that MBS parameterized by the number of non-bimodal vertices admits a polynomial kernel. As the byproduct of these results, we obtain a subexponential FPT algorithm and an efficient polynomial-time approximation scheme for MBS.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro