Parametric Representation for Singing Voice Synthesis: a Comparative Evaluation

06/07/2020
by   Onur Babacan, et al.
0

Various parametric representations have been proposed to model the speech signal. While the performance of such vocoders is well-known in the context of speech processing, their extrapolation to singing voice synthesis might not be straightforward. The goal of this paper is twofold. First, a comparative subjective evaluation is performed across four existing techniques suitable for statistical parametric synthesis: traditional pulse vocoder, Deterministic plus Stochastic Model, Harmonic plus Noise Model and GlottHMM. The behavior of these techniques as a function of the singer type (baritone, counter-tenor and soprano) is studied. Secondly, the artifacts occurring in high-pitched voices are discussed and possible approaches to overcome them are suggested.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro