Pareto-Optimal Learning-Augmented Algorithms for Online k-Search Problems

11/12/2022
by   Russell Lee, et al.
0

This paper leverages machine learned predictions to design online algorithms for the k-max and k-min search problems. Our algorithms can achieve performances competitive with the offline algorithm in hindsight when the predictions are accurate (i.e., consistency) and also provide worst-case guarantees when the predictions are arbitrarily wrong (i.e., robustness). Further, we show that our algorithms have attained the Pareto-optimal trade-off between consistency and robustness, where no other algorithms for k-max or k-min search can improve on the consistency for a given robustness. To demonstrate the performance of our algorithms, we evaluate them in experiments of buying and selling Bitcoin.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset