Pars-ABSA: An Aspect-based Sentiment Analysis Dataset in Persian

07/26/2019
by   Taha Shangipour Ataei, et al.
0

Due to the increased availability of online reviews, sentiment analysis had been witnessed a booming interest from the researchers. Sentiment analysis is a computational treatment of sentiment used to extract and understand the opinions of authors. While many systems were built to predict the sentiment of a document or a sentence, many others provide the necessary detail on various aspects of the entity (i.e. aspect-based sentiment analysis). Most of the available data resources were tailored to English and the other popular European languages. Although Persian is a language with more than 110 million speakers, to the best of our knowledge, there is not any public dataset on aspect-based sentiment analysis in Persian. This paper provides a manually annotated Persian dataset, Pars-ABSA, which is verified by 3 native Persian speakers. The dataset consists of 5114 positive, 3061 negative and 1827 neutral data samples from 5602 unique reviews. Moreover, as a baseline, this paper reports the performance of some state-of-the-art aspect-based sentiment analysis methods with a focus on deep learning, on Pars-ABSA. The obtained results are impressive compared to similar English state-of-the-art.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset