Part-of-Speech Relevance Weights for Learning Word Embeddings

03/24/2016
by   Quan Liu, et al.
0

This paper proposes a model to learn word embeddings with weighted contexts based on part-of-speech (POS) relevance weights. POS is a fundamental element in natural language. However, state-of-the-art word embedding models fail to consider it. This paper proposes to use position-dependent POS relevance weighting matrices to model the inherent syntactic relationship among words within a context window. We utilize the POS relevance weights to model each word-context pairs during the word embedding training process. The model proposed in this paper paper jointly optimizes word vectors and the POS relevance matrices. Experiments conducted on popular word analogy and word similarity tasks all demonstrated the effectiveness of the proposed method.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset