Partially APN Boolean functions and classes of functions that are not APN infinitely often
In this paper we define a notion of partial APNness and find various characterizations and constructions of classes of functions satisfying this condition. We connect this notion to the known conjecture that APN functions modified at a point cannot remain APN. In the second part of the paper, we find conditions for some transformations not to be partially APN, and in the process, we find classes of functions that are never APN for infinitely many extensions of the prime field _2, extending some earlier results of Leander and Rodier.
READ FULL TEXT