Penalized least squares and sign constraints with modified Newton-Raphson algorithms: application to EEG source imaging

11/05/2019
by   Mayrim Vega-Hernandez, et al.
0

We propose a modified Newton-Raphson (MNR) algorithm to estimate multiple penalized least squares (MPLS) models, and its extension to perform efficient optimization over the active set of selected features (AMNR). MPLS models are a more flexible approach to find adaptive least squares solutions that can be simultaneously required to be sparse and smooth. This is particularly important when addressing real-life inverse problems where there is no ground truth available, such as electrophysiological source imaging. The proposed MNR technique can be interpreted as a generalization of the Majorize-Minimize (MM) algorithm to include combinations of constraints. The AMNR algorithm allows to extend some penalized least squares methods to the p much greater than n case, as well as considering sign constraints. We show that these algorithms provide solutions with acceptable reconstruction in simulated scenarios that do not cope with model assumptions, for low n/p ratios. We then use both algorithms for estimating known and new electroencephalography (EEG) inverse models with multiple penalties. Synthetic data were used for a preliminary comparison with the corresponding solutions using the least angle regression (LARS) algorithm according to well-known quality measures; while a visual event-related EEG was used to illustrate its usefulness in the analysis of real experimental data.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset