Performance Analysis of Plug-and-Play ADMM: A Graph Signal Processing Perspective

08/31/2018
by   Stanley H. Chan, et al.
0

The Plug-and-Play (PnP) ADMM algorithm is a powerful image restoration framework that allows advanced image denoising priors to be integrated into physical forward models to yield a provably convergent algorithm. However, despite the enormous applications and promising results, very little is known about why the PnP ADMM performs so well. This paper presents a formal analysis of the performance of PnP ADMM. By restricting the denoisers to the class of graph filters, or more specifically the symmetric smoothing filters, we offer three contributions: (1) We rigorously show conditions under which an equivalent maximum-a-posteriori (MAP) optimization exists, (2) we derive the mean squared error of the PnP solution, and provide a simple geometric interpretation which can explain the performance, (3) we introduce a new analysis technique via the concept of consensus equilibrium, and provide interpretations to general linear inverse problems and problems with multiple priors.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset