Perron-Frobenius operator filter for stochastic dynamical systems

01/08/2023
by   Ningxin Liu, et al.
0

The filtering problems are derived from a sequential minimization of a quadratic function representing a compromise between model and data. In this paper, we use the Perron-Frobenius operator in stochastic process to develop a Perron-Frobenius operator filter. The proposed method belongs to Bayesian filtering and works for non-Gaussian distributions for nonlinear stochastic dynamical systems. The recursion of the filtering can be characterized by the composition of Perron-Frobenius operator and likelihood operator. This gives a significant connection between the Perron-Frobenius operator and Bayesian filtering. We numerically fulfil the recursion through approximating the Perron-Frobenius operator by Ulam's method. In this way, the posterior measure is represented by a convex combination of the indicator functions in Ulam's method. To get a low rank approximation for the Perron-Frobenius operator filter, we take a spectral decomposition for the posterior measure by using the eigenfunctions of the discretized Perron-Frobenius operator. A convergence analysis is carried out and shows that the Perron-Frobenius operator filter achieves a higher convergence rate than the particle filter, which uses Dirac measures for the posterior. The proposed method is explored for the data assimilation of the stochastic dynamical systems. A few numerical examples are presented to illustrate the advantage of the Perron-Frobenius operator filter over particle filter and extend Kalman filter.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro