Personalized Understanding of Blood Glucose Dynamics via Mobile Sensor Data
Continuous Blood Glucose (CGM) monitors have revolutionized the ability of diabetics to manage their blood glucose, and paved the way for artificial pancreas systems. In this paper we augment CGM data with sensor input collected by a smart phone and use it to provide analytical tools for patients and clinicians. We collected GPS data, activity classifications, and blood glucose data with a custom iOS application over a 9 month period from a single free-living type-1 diabetic patient. This data set is novel in terms of it's size, the inclusion of GPS data, and the fact that it was collected non-intrusively from a free-living patient. We describe a method to measure the occurrence of lifestyle events based on GPS and activity data, and show that they can capture instances of food consumption and are therefore correlated to changes in blood glucose. Finally, we incorporate these event representations into our system to create useful visualizations and notifications to aid patients in managing their diabetes.
READ FULL TEXT