Personalizing Graph Neural Networks with Attention Mechanism for Session-based Recommendation
The problem of personalized session-based recommendation aims to predict users' next click based on their sequential behaviors. Existing session-based recommendation methods only consider all sessions of user as a single sequence, ignoring the relationship of among sessions. Other than that, most of them neglect complex transitions of items and the collaborative relationship between users and items. To this end, we propose a novel method, named Personalizing Graph Neural Networks with Attention Mechanism, A-PGNN for brevity. A-PGNN mainly consists of two components: One is Personalizing Graph Neural Network (PGNN), which is used to capture complex transitions in user session sequence. Compared with the traditional Graph Neural Network (GNN) model, it also considers the role of users in the sequence. The other is Dot-Product Attention mechanism, which draws on the attention mechanism in machine translation to explicitly model the effect of historical sessions on the current session. These two parts make it possible to learn the multi-level transition relationships between items and sessions in user-specific fashion. Extensive experiments conducted on two real-world data sets show that A-PGNN significantly outperforms the state-of-the-art personalizing session-based recommendation methods consistently.
READ FULL TEXT