PetsGAN: Rethinking Priors for Single Image Generation
Single image generation (SIG), described as generating diverse samples that have similar visual content with the given single image, is first introduced by SinGAN which builds a pyramid of GANs to progressively learn the internal patch distribution of the single image. It also shows great potentials in a wide range of image manipulation tasks. However, the paradigm of SinGAN has limitations in terms of generation quality and training time. Firstly, due to the lack of high-level information, SinGAN cannot handle the object images well as it does on the scene and texture images. Secondly, the separate progressive training scheme is time-consuming and easy to cause artifact accumulation. To tackle these problems, in this paper, we dig into the SIG problem and improve SinGAN by fully-utilization of internal and external priors. The main contributions of this paper include: 1) We introduce to SIG a regularized latent variable model. To the best of our knowledge, it is the first time to give a clear formulation and optimization goal of SIG, and all the existing methods for SIG can be regarded as special cases of this model. 2) We design a novel Prior-based end-to-end training GAN (PetsGAN) to overcome the problems of SinGAN. Our method gets rid of the time-consuming progressive training scheme and can be trained end-to-end. 3) We construct abundant qualitative and quantitative experiments to show the superiority of our method on both generated image quality, diversity, and the training speed. Moreover, we apply our method to other image manipulation tasks (e.g., style transfer, harmonization), and the results further prove the effectiveness and efficiency of our method.
READ FULL TEXT