Planning and Learning with Adaptive Lookahead

01/28/2022
by   Aviv Rosenberg, et al.
0

The classical Policy Iteration (PI) algorithm alternates between greedy one-step policy improvement and policy evaluation. Recent literature shows that multi-step lookahead policy improvement leads to a better convergence rate at the expense of increased complexity per iteration. However, prior to running the algorithm, one cannot tell what is the best fixed lookahead horizon. Moreover, per a given run, using a lookahead of horizon larger than one is often wasteful. In this work, we propose for the first time to dynamically adapt the multi-step lookahead horizon as a function of the state and of the value estimate. We devise two PI variants and analyze the trade-off between iteration count and computational complexity per iteration. The first variant takes the desired contraction factor as the objective and minimizes the per-iteration complexity. The second variant takes as input the computational complexity per iteration and minimizes the overall contraction factor. We then devise a corresponding DQN-based algorithm with an adaptive tree search horizon. We also include a novel enhancement for on-policy learning: per-depth value function estimator. Lastly, we demonstrate the efficacy of our adaptive lookahead method in a maze environment and in Atari.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro