Polar Fusion Technique Analysis for Evaluating the Performances of Image Fusion of Thermal and Visual Images for Human Face Recognition

06/17/2011
by   Mrinal Kanti Bhowmik, et al.
0

This paper presents a comparative study of two different methods, which are based on fusion and polar transformation of visual and thermal images. Here, investigation is done to handle the challenges of face recognition, which include pose variations, changes in facial expression, partial occlusions, variations in illumination, rotation through different angles, change in scale etc. To overcome these obstacles we have implemented and thoroughly examined two different fusion techniques through rigorous experimentation. In the first method log-polar transformation is applied to the fused images obtained after fusion of visual and thermal images whereas in second method fusion is applied on log-polar transformed individual visual and thermal images. After this step, which is thus obtained in one form or another, Principal Component Analysis (PCA) is applied to reduce dimension of the fused images. Log-polar transformed images are capable of handling complicacies introduced by scaling and rotation. The main objective of employing fusion is to produce a fused image that provides more detailed and reliable information, which is capable to overcome the drawbacks present in the individual visual and thermal face images. Finally, those reduced fused images are classified using a multilayer perceptron neural network. The database used for the experiments conducted here is Object Tracking and Classification Beyond Visible Spectrum (OTCBVS) database benchmark thermal and visual face images. The second method has shown better performance, which is 95.71 recognition rate.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset