Polarity and Subjectivity Detection with Multitask Learning and BERT Embedding

01/14/2022
by   Ranjan Satapathy, et al.
9

Multitask learning often helps improve the performance of related tasks as these often have inter-dependence on each other and perform better when solved in a joint framework. In this paper, we present a deep multitask learning framework that jointly performs polarity and subjective detection. We propose an attention-based multitask model for predicting polarity and subjectivity. The input sentences are transformed into vectors using pre-trained BERT and Glove embeddings, and the results depict that BERT embedding based model works better than the Glove based model. We compare our approach with state-of-the-art models in both subjective and polarity classification single-task and multitask frameworks. The proposed approach reports baseline performances for both polarity detection and subjectivity detection.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset