Popular Matchings and Limits to Tractability

05/26/2018
by   Yuri Faenza, et al.
0

We consider popular matching problems in both bipartite and non-bipartite graphs with strict preference lists. It is known that every stable matching is a min-size popular matching. A subclass of max-size popular matchings called dominant matchings has been well-studied in bipartite graphs: they always exist and there is a simple linear time algorithm to find one. We show that stable and dominant matchings are the only two tractable subclasses of popular matchings in bipartite graphs; more precisely, we show that it is NP-complete to decide if G admits a popular matching that is neither stable nor dominant. We also show a number of related hardness results, such as (tight) inapproximability of the maximum weight popular matching problem. In non-bipartite graphs, we show a strong negative result: it is NP-hard to decide whether a popular matching exists or not, and the same result holds if we replace popular with dominant. On the positive side, we show that in any graph G with edge costs and bounded treewidth, a popular matching of minimum cost can be found efficiently.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro