Post Quantum Cryptography: Techniques, Challenges, Standardization, and Directions for Future Research

02/06/2022
by   Ritik Bavdekar, et al.
0

The development of large quantum computers will have dire consequences for cryptography. Most of the symmetric and asymmetric cryptographic algorithms are vulnerable to quantum algorithms. Grover's search algorithm gives a square root time boost for the searching of the key in symmetric schemes like AES and 3DES. The security of asymmetric algorithms like RSA, Diffie Hellman, and ECC is based on the mathematical hardness of prime factorization and discrete logarithm. The best classical algorithms available take exponential time. Shor's factoring algorithm can solve the problems in polynomial time. Major breakthroughs in quantum computing will render all the present-day widely used asymmetric cryptosystems insecure. This paper analyzes the vulnerability of the classical cryptosystems in the context of quantum computers discusses various post-quantum cryptosystem families, discusses the status of the NIST post-quantum cryptography standardization process, and finally provides a couple of future research directions in this field.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset