Posterior Model Adaptation With Updated Priors

07/02/2020
by   Jim Davis, et al.
15

Classification approaches based on the direct estimation and analysis of posterior probabilities will degrade if the original class priors begin to change. We prove that a unique (up to scale) solution is possible to recover the data likelihoods for a test example from its original class posteriors and dataset priors. Given the recovered likelihoods and a set of new priors, the posteriors can be re-computed using Bayes' Rule to reflect the influence of the new priors. The method is simple to compute and allows a dynamic update of the original posteriors.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset