Preference Modeling by Exploiting Latent Components of Ratings

by   Junhua Chen, et al.

Understanding user preference is essential to the optimization of recommender systems. As a feedback of user's taste, rating scores can directly reflect the preference of a given user to a given product. Uncovering the latent components of user ratings is thus of significant importance for learning user interests. In this paper, a new recommendation approach, called LCR, was proposed by investigating the latent components of user ratings. The basic idea is to decompose an existing rating into several components via a cost-sensitive learning strategy. Specifically, each rating is assigned to several latent factor models and each model is updated according to its predictive errors. Afterwards, these accumulated predictive errors of models are utilized to decompose a rating into several components, each of which is treated as an independent part to retrain the latent factor models. Finally, all latent factor models are combined linearly to estimate predictive ratings for users. In contrast to existing methods, LCR provides an intuitive preference modeling strategy via multiple component analysis at an individual perspective. Meanwhile, it is verified by the experimental results on several benchmark datasets that the proposed method is superior to the state-of-art methods in terms of recommendation accuracy.


page 1

page 2

page 3

page 4


Flatter is better: Percentile Transformations for Recommender Systems

It is well known that explicit user ratings in recommender systems are b...

Two-Way Latent Grouping Model for User Preference Prediction

We introduce a novel latent grouping model for predicting the relevance ...

All You Need is Ratings: A Clustering Approach to Synthetic Rating Datasets Generation

The public availability of collections containing user preferences is of...

Less Can Be More: Exploring Population Rating Dispositions with Partitioned Models in Recommender Systems

In this study, we partition users by rating disposition - looking first ...

Recommending POIs for Tourists by User Behavior Modeling and Pseudo-Rating

POI recommendation is a key task in tourism information systems. However...

A Simple and Scalable Tensor Completion Algorithm via Latent Invariant Constraint for Recommendation System

In this paper we provide a latent-variable formulation and solution to t...

GCN-Based User Representation Learning for Unifying Robust Recommendation and Fraudster Detection

In recent years, recommender system has become an indispensable function...

Please sign up or login with your details

Forgot password? Click here to reset