Probability flow solution of the Fokker-Planck equation
The method of choice for integrating the time-dependent Fokker-Planck equation in high-dimension is to generate samples from the solution via integration of the associated stochastic differential equation. Here, we introduce an alternative scheme based on integrating an ordinary differential equation that describes the flow of probability. Unlike the stochastic dynamics, this equation deterministically pushes samples from the initial density onto samples from the solution at any later time. The method has the advantage of giving direct access to quantities that are challenging to estimate only given samples from the solution, such as the probability current, the density itself, and its entropy. The probability flow equation depends on the gradient of the logarithm of the solution (its "score"), and so is a-priori unknown. To resolve this dependence, we model the score with a deep neural network that is learned on-the-fly by propagating a set of particles according to the instantaneous probability current. Our approach is based on recent advances in score-based diffusion for generative modeling, with the important difference that the training procedure is self-contained and does not require samples from the target density to be available beforehand. To demonstrate the validity of the approach, we consider several examples from the physics of interacting particle systems; we find that the method scales well to high-dimensional systems, and accurately matches available analytical solutions and moments computed via Monte-Carlo.
READ FULL TEXT