PROBE3.0: A Systematic Framework for Design-Technology Pathfinding with Improved Design Enablement
We propose a systematic framework to conduct design-technology pathfinding for PPAC in advanced nodes. Our goal is to provide configurable, scalable generation of process design kit (PDK) and standard-cell library, spanning key scaling boosters (backside PDN and buried power rail), to explore PPAC across given technology and design parameters. We build on PROBE2.0, which addressed only area and cost (AC), to include power and performance (PP) evaluations through automated generation of full design enablements. We also improve the use of artificial designs in the PPAC assessment of technology and design configurations. We generate more realistic artificial designs by applying a machine learning-based parameter tuning flow. We further employ clustering-based cell width-regularized placements at the core of routability assessment, enabling more realistic placement utilization and improved experimental efficiency. We demonstrate PPAC evaluation across scaling boosters and artificial designs in a predictive technology node.
READ FULL TEXT