Profile Based Sub-Image Search in Image Databases

10/07/2010
by   Vishwakarma Singh, et al.
0

Sub-image search with high accuracy in natural images still remains a challenging problem. This paper proposes a new feature vector called profile for a keypoint in a bag of visual words model of an image. The profile of a keypoint captures the spatial geometry of all the other keypoints in an image with respect to itself, and is very effective in discriminating true matches from false matches. Sub-image search using profiles is a single-phase process requiring no geometric validation, yields high precision on natural images, and works well on small visual codebook. The proposed search technique differs from traditional methods that first generate a set of candidates disregarding spatial information and then verify them geometrically. Conventional methods also use large codebooks. We achieve a precision of 81 of synthetic and real natural images using a codebook size of 500 for top-10 queries; that is 31 approach.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro