Profitable Bandits

05/08/2018
by   Mastane Achab, et al.
0

Originally motivated by default risk management applications, this paper investigates a novel problem, referred to as the profitable bandit problem here. At each step, an agent chooses a subset of the K possible actions. For each action chosen, she then receives the sum of a random number of rewards. Her objective is to maximize her cumulated earnings. We adapt and study three well-known strategies in this purpose, that were proved to be most efficient in other settings: kl-UCB, Bayes-UCB and Thompson Sampling. For each of them, we prove a finite time regret bound which, together with a lower bound we obtain as well, establishes asymptotic optimality. Our goal is also to compare these three strategies from a theoretical and empirical perspective both at the same time. We give simple, self-contained proofs that emphasize their similarities, as well as their differences. While both Bayesian strategies are automatically adapted to the geometry of information, the numerical experiments carried out show a slight advantage for Thompson Sampling in practice.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro