Programming with Personalized PageRank: A Locally Groundable First-Order Probabilistic Logic

05/10/2013
by   William Yang Wang, et al.
0

In many probabilistic first-order representation systems, inference is performed by "grounding"---i.e., mapping it to a propositional representation, and then performing propositional inference. With a large database of facts, groundings can be very large, making inference and learning computationally expensive. Here we present a first-order probabilistic language which is well-suited to approximate "local" grounding: every query Q can be approximately grounded with a small graph. The language is an extension of stochastic logic programs where inference is performed by a variant of personalized PageRank. Experimentally, we show that the approach performs well without weight learning on an entity resolution task; that supervised weight-learning improves accuracy; and that grounding time is independent of DB size. We also show that order-of-magnitude speedups are possible by parallelizing learning.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro