Proposal for a Leaky-Integrate-Fire Spiking Neuron based on Magneto-Electric Switching of Ferro-magnets

09/29/2016
by   Akhilesh Jaiswal, et al.
0

The efficiency of the human brain in performing classification tasks has attracted considerable research interest in brain-inspired neuromorphic computing. Hardware implementations of a neuromorphic system aims to mimic the computations in the brain through interconnection of neurons and synaptic weights. A leaky-integrate-fire (LIF) spiking model is widely used to emulate the dynamics of neuronal action potentials. In this work, we propose a spin based LIF spiking neuron using the magneto-electric (ME) switching of ferro-magnets. The voltage across the ME oxide exhibits a typical leaky-integrate behavior, which in turn switches an underlying ferro-magnet. Due to the effect of thermal noise, the ferro-magnet exhibits probabilistic switching dynamics, which is reminiscent of the stochasticity exhibited by biological neurons. The energy-efficiency of the ME switching mechanism coupled with the intrinsic non-volatility of ferro-magnets result in lower energy consumption, when compared to a CMOS LIF neuron. A device to system-level simulation framework has been developed to investigate the feasibility of the proposed LIF neuron for a hand-written digit recognition problem

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro