Quantitative bias analysis for outcome phenotype error correction in comparative effect estimation: an empirical and synthetic evaluation
Outcome phenotype measurement error is rarely corrected in comparative effect estimation studies in observational pharmacoepidemiology. Quantitative bias analysis (QBA) is a misclassification correction method that algebraically adjusts person counts in exposure-outcome contingency tables to reflect the magnitude of misclassification. The extent QBA minimizes bias is unclear because few systematic evaluations have been reported. We empirically evaluated QBA impact on odds ratios (OR) in several comparative effect estimation scenarios. We estimated non-differential and differential phenotype errors with internal validation studies using a probabilistic reference. Further, we synthesized an analytic space defined by outcome incidence, uncorrected ORs, and phenotype errors to identify which combinations produce invalid results indicative of input errors. We evaluated impact with relative bias [(OR-ORQBA)]/OR*100 cell was corrected to a negative number. Empirical bias correction was greatest in lower incidence scenarios where uncorrected ORs were larger. Similarly, synthetic bias correction was greater in lower incidence settings with larger uncorrected estimates. The invalid proportion of synthetic scenarios increased as uncorrected estimates increased. Results were invalid in common, low incidence scenarios indicating problematic inputs. This demonstrates the importance of accurately and precisely estimating phenotype errors before implementing QBA in comparative effect estimation studies.
READ FULL TEXT