Quantitative convergence of the vectorial Allen-Cahn equation towards multiphase mean curvature flow

03/31/2022
by   Julian Fischer, et al.
0

Phase-field models such as the Allen-Cahn equation may give rise to the formation and evolution of geometric shapes, a phenomenon that may be analyzed rigorously in suitable scaling regimes. In its sharp-interface limit, the vectorial Allen-Cahn equation with a potential with N≥ 3 distinct minima has been conjectured to describe the evolution of branched interfaces by multiphase mean curvature flow. In the present work, we give a rigorous proof for this statement in two and three ambient dimensions and for a suitable class of potentials: As long as a strong solution to multiphase mean curvature flow exists, solutions to the vectorial Allen-Cahn equation with well-prepared initial data converge towards multiphase mean curvature flow in the limit of vanishing interface width parameter ε↘ 0. We even establish the rate of convergence O(ε^1/2). Our approach is based on the gradient flow structure of the Allen-Cahn equation and its limiting motion: Building on the recent concept of "gradient flow calibrations" for multiphase mean curvature flow, we introduce a notion of relative entropy for the vectorial Allen-Cahn equation with multi-well potential. This enables us to overcome the limitations of other approaches, e.g. avoiding the need for a stability analysis of the Allen-Cahn operator or additional convergence hypotheses for the energy at positive times.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset