Quantum-inspired optimization for routing and wavelength assignment

11/01/2022
by   Aleksey S. Boev, et al.
0

Problems related to routing and wavelength assignment (RWA) in optical communications networks involve allocating transmission wavelengths and finding transmission paths between nodes that minimize a certain objective function, for example, the total number of wavelengths. Playing a central role in modern telecommunications, this problem belongs to NP-complete class for a general case, so that obtaining optimal solutions for industry relevant cases is exponentially hard. In this work, we propose and develop a quantum-inspired algorithm for solving the RWA problem in a particular yet industry relevant case, in which we specifically focus on the wavelength assignment task for known routes. We propose an advanced embedding procedure for this problem into the quadratic unconstrained binary optimization (QUBO) form having a logarithmic improvement in the number of iterations with price-to-pay being a slight increase in the number of variables ("spins"). Then we compare a quantum-inspired technique for solving the corresponding QUBO form against classical heuristic and industrial combinatorial solvers. The obtained numerical results indicate on an advantage of the quantum-inspired approach in a substantial number of test cases against the industrial combinatorial solver that works in the standard setting. Our results pave the way to the use of quantum-inspired algorithms for practical problems in telecommunications and open a perspective for the further analysis of the employ of quantum computing devices.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro